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Abstract

A model to predict the effective stiffness of woven fabric composite materials is presented. Taking advantage of the
inherent periodicity of woven fabric architecture, periodic microstructure theory is used at the mesoscale for the case of
a two-phase heterogeneous material with multiple periodic inclusions. For plain weave fabrics, the representative vol-
ume element (RVE) is discretized into fiber/matrix bundles and the pure matrix regions that surround them. The sur-
faces of the fiber/matrix bundles are fit with sinusoidal equations using two approaches. The first is based on
measurements taken from photomicrographs of composite specimens and the second is based on an idealized represen-
tation of the plain weave structure. Three-dimensional sinusoidal surfaces are generated from the face equations and
weave shape for the real and idealized cases in order to mathematically describe the fiber/matrix bundle regions, which
are treated as unidirectional composites. Model results from the idealized geometry are compared to experimental data
from the literature and show good agreement, including interlaminar material properties. From a comparison of the
real and idealized geometry results for similar material RVE dimensions, it is seen that the model is capable of predict-
ing significant changes in the in-plane material properties from slight mismatch in the fiber/matrix bundle shape and
crimp, which can be captured using the geometric surfaces generated from photomicrograph measurements.
© 2004 Published by Elsevier Ltd.

1. Background

An increasing number of fiber reinforced composite components are being fabricated with load-carrying
fibers, which are woven to form a fabric. This reinforcement system has advantages with respect to
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fabrication as well as mechanical properties. The weaving and interlacing of the fiber tows produces a self-
supporting system that can be draped and manipulated to form complex shapes. Mechanically, the geom-
etry of a fabric provides bi-directional stiffness in the plane of loading (£, E,), increased interlaminar
stiffness out of the plane of loading (E3, Gy3, G»3), and superior impact tolerance. For this class of fiber-rein-
forced composite, the prediction of an effective set of material properties is significantly more complex than
for unidirectional ply laminates. The complexity is due to the weaving and interlacing of the fiber tows. The
objective of this research is to develop an analytical model that predicts a complete set of orthotropic effec-
tive material properties for woven fabric composites based solely on the properties of the constituent
materials.

Significant research pertaining to the modeling of woven fabric composites has been conducted over the
past 20 years. Most of the analytical models initially developed are based on classical lamination theory
(CLT). Using CLT, the representative volume element (RVE) is idealized as a series of cross-ply laminates
that are stacked in a sequence that resembles the woven fabric architecture (Fig. 1), while the geometry used
in this work is depicted in Fig. 2. CLT was first used in the mosaic, fiber undulation, and bridging models
(Ishikawa and Chou, 1982). Subsequent research further extended CLT using more complex discretization
schemes and iterative approaches (Hahn and Pandey, 1994; Ito and Chou, 1998; Ito and Chou, 1997; Naik
and Ganesh, 1996; Aboudi, 1991; Scida et al., 1999; Vandeurzen et al., 1996a; Vandeurzen et al., 1996b).
CLT is relatively easy to implement and predicts well the longitudinal moduli for plain weave fabric com-
posite. Since these models neglect or roughly approximate the actual undulated woven geometry, they are

=

Fig. 1. CLT idealization of a plain weave fabric RVE (showing 1/2 the period in the in-plane directions).
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Fig. 2. Mesoscale analysis of a plain weave fabric RVE (1/2 period shown in-plane (x-y)).
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ineffective at calculating the out-of-plane and shear moduli. Other methods of predicting plain weave fabric
composite material properties include the energy equivalence method (Zhang and Harding, 1990), varia-
tional potential energy (Zhong and Van Hoa, 2001), and full-scale discretization using the finite element
method (Dasgupta et al., 1996; Dasgupta and Bhandarkar, 1994; Kollegal and Sridharan, 2000a; Kollegal
and Sridharan, 2000b; Kollegal and Sridharan, 1998; Sheng and Hoa, 2001; Kuhn and Charalambides,
1998a; Kuhn and Charalambides, 1998b; Aitharaju and Averill, 1999; Kuhn and Charalambides, 1999;
Blackketter et al., 1993). These methods are significantly more powerful and comprehensive than CLT,
but are also much more complicated and computationally expensive to implement.

The concept of exploiting geometric periodicity through the technique of periodic microstructure is
widely known and accepted. This technique was originally developed to analyze materials with periodically
distributed micro cracks or micro voids (Nemat-Nasser and Hori, 1993). A micromechanical model to pre-
dict particulate composite material properties was developed in (Nemat-Nasser et al., 1993). The author has
also developed a micromechanical model for unidirectional fiber reinforced ply lamina material properties
through an assumed periodic distribution of fiber reinforcement (Luciano and Barbero, 1994; Barbero and
Luciano, 1995). The objective of this research is to use the existing periodic microstructure theory applied at
the meso-level to model the undulating fiber/matrix tows as periodic inclusions, and then modify the ana-
Iytical scheme for prediction of the overall material properties of a plain weave fabric reinforced composite
material. A brief overview of the existing theory and modifications necessary for modeling fiber/matrix tow
regions at the mesoscale are presented.

2. Periodic microstructure

Periodic microstructure mechanics exploits the geometric periodicity of the system in order simplify the
mechanical field variables, such as the stress, strain, and stiffness. In general, all of these terms are functions
of position inside of the representative volume element (RVE). The periodicity of a plain weave fabric RVE
enables expansion of the field variables in terms of a three dimensional Fourier series, thus creating more
simplified and workable expressions. The expansion is generally expressed as

o) = Y [Fe(2) - explix - O (1)
in which the Fourier coefficients are

Fol®) = [ ) - exp(-ix- @

§ =¢ = 51‘(”1:‘) = n;n (3)

and a; is 1/2 the length of each RVE dimension. The number of terms N in the Fourier expansion influences
the accuracy of the Fourier series in representing the field variable. All of the possible combinations of n;,
n,, and n3 ranging from —N to N, with the exclusion of the term when the n values are all equal to zero, are
employed in the expansion of all relevant field variables (Luciano and Barbero, 1994; Barbero and Luciano,
1995).

Periodic microstructure has already been used successfully to predict the material properties of fiber rein-
forced unidirectional ply lamina in (Luciano and Barbero, 1994; Barbero and Luciano, 1995). In order to
apply this technique to a plain weave fabric RVE, the in situ impregnated fiber tows are assumed to be
transversely isotropic inclusions in the RVE surrounded by un-reinforced matrix pockets. These inclusions
consist of unidirectional composite reinforced with fiber bundles. The fibers in the inclusions undulate in a
sinusoidal pattern, as seen in Fig. 2.
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3. Homogenization using an eigenstrain

Use of periodic microstructure enables the expression of field variables, which are generally functions of
position, in a workable manner. The material is heterogeneous, with two distinct material regions: the inclu-
sions and the matrix that surrounds the inclusions. The inclusions are transversely isotropic. The surround-
ing matrix is isotropic. In order to obtain a single set of effective material properties, these two regions are
homogenized into a region with a single set of material properties. Since the matrix is a much simpler mate-
rial to represent, the inclusions 2 are homogenized to the surrounding matrix material M using an eigen-
strain (Nemat-Nasser and Hori, 1993). The stiffness matrix C* of the fiber tow inclusions are homogenized
to the stiffness C of the surrounding matrix through the calculation of the eigenstrain, which is a corrective
strain term added to satisfy the consistency condition. The homogenization scheme, which is expressed in
terms of a uniformly applied macrostrain ¢° to the system, is expressed as

o(x) =C: (& +£(x)) inM (4)

ox)=C?: (°+£°(x)) inQ (5)

Egs. (4) and (5) represent the constitutive equations for regions surrounding the inclusions M and inside of
the inclusion Q, respectively. The concept of homogenization in the context of multi-phase composite mate-
rials was initially developed by Mori and Tanaka (1973) and further modified by Weng (1984) for applica-
tion to particulate composites. The periodic disturbance strain, denoted ", is the strain produced due to the
presence of the inclusions. This term is written through a Fourier expansion as

0= Y 0 [ [0 ewte - pan,) )

in which the term FS* is the Fourier coefficient of the periodic integral operator, which relates the periodic
disturbance strain to the eigenstrain. The homogenization of a general heterogeneous RVE modifies Eq. (5)
to the following form
c(e°+eP(x) inM
. } (7)
in Q

P * £ (8
ax)=C: (& +£x) @)= { C: (& +80) — &' (x)

in which the stiffness of the inclusion, C¥, is replaced by the stiffness of the surrounding matrix, C and the
term &*(x) is the eigenstrain, a corrective term added to the constitutive equation to balance out the mod-
ified stiffness term. The process of homogenization is valid only if the resulting stress at a given position
remains unchanged by the correction. This restriction is referred to as the consistency condition and is writ-
ten as

Co): (& +6" (@) =C: (" + 6" (1) — () 8)

The eigenstrain is a function of position and bounded by the dimensions of the inclusions. Through the use
of Fourier expansion and eigenstrain homogenization, the effective material properties of a plain weave fab-
ric composite can be determined.

4. Average Eigenstrain approximation

Through expansion and simplification of all terms in Eq. (8) that are functions of position (Damiani,
2003), the consistency condition is written by Nemat-Nasser and Hori (1993) as
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FC?(&) : ¢ +

= C: [+ FS"(): Fe'(&) - Fe'(9) )

in which FC® FS®, Fe* are the Fourier coefficients of the inclusion stiffness, periodic integral operator
(relating the disturbance strain &° to the eigenstrain ¢*), and the periodic eigenstrain, respectively. These
terms are summarized as follows:

FCO =y [ W ew(-ix v (10
FS' (@) =sym[ew (- C 9 wg] i C (1)
FrQ =3 [ 2@ ew(-ix-ar (12)

The significance of Eq. (9) is that all of the original field variables in Eq. (8) have been replaced by Fourier
coefficient terms. Eq. (9) represents a linear system of equations over the number of ¢ terms taken, the solu-
tion of which is the Fourier coefficient of the eigenstrain, Fe*.

In order to determine the effective stiffness matrix for a plain weave fabric composite, it is assumed that
the eigenstrain is a constant value, denoted &*. For a heterogeneous RVE with multiple inclusions Eq. (8)
becomes (Nemat-Nasser and Hori, 1993)

((::9)“ : (e" + ZW:SP(QM Q) g*ﬁ> =C: (s" + Z [S7(Q., Qp) — S,1™] - g*ﬂ> (13)

p=1 p=1

where o and f represent indexes over the number of inclusions. Eq. (13) is the periodic consistency condi-
tion for multiple inclusions and an average eigenstrain approximation. The periodic integral operator for
this case, as is the case with a plain weave fabric, is

SP(Q,, ) = Z o 8.(=O)gy(OFS" (&) (14)
in which the g-integral terms are expressed as
1 .
6= | explic-x)dr (15)
o Q,

The periodic integral operator, S¥, takes into account the interaction between the various inclusions inside
of an RVE. For the plain weave fabric case, o and f§ are numbered indexes from 1 to 4. Thus, S* results in a
6%m by 6%m matrix in which m is the number of inclusions inside of the RVE. Finally, in this work we pro-
pose that the effective stiffness for multiple inclusions can be expressed as

et Srlfe )

5N

—c: (g(gx, Q) — 5a,g1<4s)) — 7 5M(Q,, ) (17)

in which 6, is the Dirac delta function and C% is the averaged mesoscale stiffness of a given inclusion. Eq.
(16) represents the effective stiffness of a two-phase heterogeneous material with m inclusions of stiffness C*
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surrounded by an isotropic material of stiffness C. A plain weave fabric composite can be analyzed in this
manner if the fiber/matrix tows are treated as the inclusions surrounded by pure matrix regions.

5. Geometric characterization of the inclusions

Determination of the effective material properties for a plain-weave fabric using periodic microstructure
and homogenization requires the bounds (surfaces) of the fiber/matrix inclusions to be known so that the
integration in Eq. (15) can be performed. The Construction Engineering Research Laboratory (CERL) of
the US Army Corps of Engineers captured detailed photomicrographs of the four faces inherent in a cuboid
RVE for an AS4/vinylester plain weave fabric. In addition, Ito and Chou (1998) developed analytical expres-
sions for a geometric description of the inclusion bounds based on RVE and tow dimensions. The distinction
between the two approaches is that the Ito and Chou representation is idealized, resulting in identical weave
patterns in the warp and fill directions, along with constant inclusion thicknesses. The photomicrographs
from CERL are measured and averaged over several RVE’s. There is slight mismatch between the warp
and fill faces of the CERL geometry (Fig. 2), resulting in the warp and fill tows having different thicknesses
and degrees of tow crimp. The effects of such a mismatch on material property characterization will be dis-
cussed in Section 7. Once the inclusion geometry has been completely described, the equations derived in
Section 4 can be evaluated and the effective material properties of the RVE can be determined.

In addition to the CERL geometry, the geometric parameters of the following plain weave laminae are
used to generate inclusion surface bounds: AS4 carbon/vinylester fabric (Ito and Chou, 1998), E-glass/vinyl-
ester fabric (Scida et al., 1999), E-glass/epoxy fabric (Kollegal and Sridharan, 2000b), and T300/epoxy
(Sheng and Hoa, 2001). For each case, the RVE and tow parameters are used as inputs into the idealized
face equations. The dimensions of the RVE geometries are listed in Table 1 and depicted in Fig. 2. The
volume of the RVE is 8(a;)(a2)(a3) and a, is the smallest distance between adjacent inclusions.

5.1. Mapping the two dimensional faces of the RVE

A typical photomicrograph of the CERL geometry is shown in Fig. 3. It reveals the cross-sectional bounds
of the inclusions running out of the plane, as well as the undulating shape of the inclusions in the plane. From
photomicrographs of the RVE faces, the bounds of the out-of-plane cross-section and in-plane weave shape
for the warp and fill inclusions are digitized using the program GRABIT, a simple excel macro used to tran-
scribe pictures into graphs. The series of data points are then fit to a sinusoidal function of the form

fx)=4sin(B-x+C)+D (18)

In this research, 4 and D have units of meters (m), B has units of inverse meters (1/m), and C is dimen-
sionless. For each face of the CERL geometry, four sinusoidal curves of the form of Eq. (18) are generated
from the photomicrographs. The curve fit parameters of the CERL geometry follow the form of Eq. (18).
For example, the front fill face (see Fig. 2) is represented by the following equations:

topy;(x) = .000129 - sin[—2153 - x — 0.41] + .000091 (19)
botyi(x) = .0000744 - sin[1710 - x] 4 .000106 (20)
toppy; (x) = .0000744 - sin[1710 - x] — .000106 (1)
botpsr(x) = —.000161 - sin[—1874 - x + 9.59] — .0000585 (22)

where the subscript f1f denotes fill 1 front face. Note that Egs. (20) and (21) define the bottom cross-section
bound of fill 1 and the top bound of fill 2, and both equations represent the undulating shape of warp 4 as
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Table 1
Dimension parameters and material property data for the fabric geometries (moduli in GPa)

CERL geometry Idealized geometry
Ito and Chou (1998) Scida et al. (1999) Kollegal and Sridharan (2000b) Sheng and Hoa (2001)

Fiber Carbon AS4-D  Carbon AS4-D E-glass E-glass Carbon T300
E; 221 221 72.3 72.3 230

ve 0.22 0.22 0.26 0.26 0.26

Matrix Vinylester Vinylester Vinylester Epoxy Epoxy

E, 3.4 3.4 34 3.12 3.12

Vin 0.35 0.35 0.35 0.38 0.38

Tow data All tow properties found using isotropic periodic microstructure micromechanics (Luciano and Barbero, 1994)
Vtow 0.724* 0.735° (0.42) 0.798¢ 0.697¢ 0.752° (0.44)
E; 160.755 163.302 58.397 51.352 173.864

E, 19.489 20.252 20.865 15.04 22.135

Vi2 0.28 0.279 0.241 0.262 0.278

Va3 0.415 0.417 0.386 0.437 0.42

Ga 7.393 7.757 8.465 5.342 8.611

Gas 6.886 7.147 7.527 5.232 7.796

RVE geometry parameters

a; (pm) 920 1608 600 310 480

ay (pm) 920 1528 600 310 550

as (pm) 250 318 50 100 80

ag (pm) 170 317 20 20 151

ag (pm) 170 275 20 20 11

@ Estimated from overall fiber volume fraction of idealized CERL geometry, see Section 7.
® Calculated according to Eq. (44) in Section 7.
¢ Data from references.

Fig. 3. Rear warp face of the fabric geometry of CERL.

shown in Fig. 4. For the idealized geometry, the fitting parameters are represented as a function of the RVE
geometric dimensions (see Fig. 2). The idealized cross-section bounds for a generic front fill face are rep-
resented as

as . (7m-ag as| . n n-(ag, —4-a))
t [ o sy 2. v —
o 4= =590 (5532) =3 o [y e

_B n (P B
2™ (4-a1)+2 (23)
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top,,(2) =.000129-sin[-2153-2—0.41]+.000091 bot,,(2) =.0000744-sin[1710-z] +.000106

Warp 4 -

height through the RVE (m)
o
T

-5.10°* 0 510
position along the front face (m)

top () =.0000744 sin[1710-z] - 000106 bot () =—000161-sin[~1874-2+9.59] -.0000585

Fig. 4. Front fill face plot of the CERL geometry with face equations found through photomicrographs (1/2 period shown).

as . T a
botgg (x):fsm (2-a1.x> +73 (24)
B () e
topps (x) = 5 sin (2%1 x) + > (25)
a; . (7m-a, a] . m m-(ag, — 4 a1)
botpy = |-=" -5 ’
Otezg (¥) { 2 Sln<4'a1> 2] o [(ag -2-a) x+2'(ag1_2'a1)
@ g (Tt}
+2 Sm<4~a1> > (26)

where the subscript f1fi denotes fill 1 front face idealized. For each plain weave geometry used in the anal-
ysis, there is a set of equations defining the cross-sectional bound and undulating shape of each tow. The
curve fitting parameters are listed in Table 2 for each face of the respective RVE.

5.2. Generation of surface functions from the face boundaries

From the two-dimensional plots created in Section 5.1, two things can be determined for a given cross-
section: (a) the shape of the inclusion cross-section on each face of the RVE and (b) the undulation of each
inclusion. The three-dimensional surface function bounds are determined by a three-dimensional curve fit
in which the curves defined on the respective RVE faces are the conditions or boundaries used to determine
the surface parameters, which are similar to the curve fitting parameters of Section 5.1 but are now func-
tions instead of constants. The fill inclusions (1 and 2 in Fig. 2) normal to the x-direction and extending in
the y-direction are fit to sinusoidal surface functions of the form

Folx,y) = A(x) - sin(B(x) - y + C(x)) + D(x) (27)



Table 2

Curve fit parameters of RVE faces for various fabric geometries Eq. (18)

Fill 1 front face

Fill 1 rear face

Fill 2 front face

Fill 2 rear face

Warp 3 front face

Warp 3 rear face

Warp 4 front face

Warp 4 rear face

Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom
CERL
A (m) 1.29E—4 744E-5 744E-5 —2.01E-4 7.44E-5 —1.61E-4 1.04E—4 7.44E-5 1.26E—4 138E-4 1.38E—4 —2.25E—-4 1.38E—4 9.37E-5 —1.89E-4 1.38E—4
B(1/m) -2153.1 1710 1710 1646 1710 —1874 2499 1710 1980 1727 1727 1416 1727 2406 1561 1727
C —0.4100 0 ki 3.09 0 9.59 —0.729 T —0.251 n 0 0.269 n 0.642 —0.134 0
D (m) 9.10E-5 1.06E-4 —1.06E-4 —1.9E-5 —1.06E—4 —585E-5 1.16E-4 1.06E—4 431E-5 9.38E-5 —9.38E—5 5.55E-5 —9.38E—5 —-7.59E-5 —1.93E-5 9.38E-5
Ito and Chou (1998)
A (m) —1.89E—-4 1.59E-4 —1.59E—-4 1.89E—4 1.59E—4 —1.89E-4 1.89E-4 —1.59E—4 181E-4 1.59E-4 1.59E-4 —1.81E-4 —1.59E-4 181E—4 —1.81E-4 1.59E—4
B(l/m) —1112 971 971 —1112 971 —1112 —1112 971 —1130 1028 1028 —1130 1028 —1130 —1130 1028
C —3.36 0 0 —3.36 0 3.36 3.36 0 3.30 0 0 3.30 0 —3.30 —3.30 0
D (m) 1.29E—4 1.59E—-4 —1.59E—-4 —1.29E-4 —-1.59E—-4 —1.29E—4 1.29E—4 1.59E—4 137E-4 1.59E—-4 —1.59E—4 —-137E-4 1.59E—4 —1.37E-4 1.37E—4 1.59E—4
Scida et al. (1999)
A (m) —2.57E-4 2.5E-5 —2.5E-5 2.57E-5 2.5E-5 —2.57E-5 2.57E-5 —2.5E-5 2.57E-5 25E-5 2.5E-5 —2.57E-5 —2.5E-5 2.57E-5 —2.57E-5 2.5E-5
B(1/m) —2662 2618 2618 —2662 2618 —2662 —2992 2618 —2662 2618 2618 —2992 2618 —2662 —2662 2618
C -3.17 0 0 -3.17 0 3.17 3.17 0 3.17 0 0 3.17 0 -3.17 -3.17 0
D (m) 2.43E-5 2.5E-5 —2.5E-5 —243E-5 —2.5E-5 —243E-5 243E-5 25E-5 243E-5 25E-5 —2.5E-5 —243E-5 2.5E-5 —243E-5 243E-5 2.5E-5
Kollegal and Sridharan (2000b)
A (m) —5.25E-5 5.00E-5 —5.00E-5 5.25E-5 5.00E-5 —525E-5 5.25E-5 —5.00E-5 525E-5 S5.00E-5 5.00E-5 —5.25E-5 —5.00E-5 525E-5 —5.25E-5 5.00E-5
B(1/m) —5236 5067 5067 —5236 5067 —5236 —5236 5067 —5236 5067 5067 —5236 5067 —5236 —5236 5067
C -3.19 0 0 -3.19 0 3.19 3.19 0 3.19 0 0 3.19 0 -3.19 -3.19 0
D (m) 4.75E-5 5.00E-5 —500E-5 —4.75E-5 —5.00E-5 —475E-5 4.75E-5 5.00E-5 475E-5 5.00E-5 —5.00E-5 —4.75E-5 5.00E-5 —4.75E-5 4.75E-5 5.00E-5
Sheng and Hoa (2001)
A (m) —498E—5 4.00E-5 —4.00E-5 4.98E-5 4.00E-5 —4.98E—5 4.98E—5 —4.00E-5 4.06E-5 4.00E-5 4.00E-5 —4.06E-5 —4.00E-5 4.06E—5 —4.06E-5  4.00E-5
B(1/m) 3883 3272 3272 —3883 3272 —3883 —3883 3272 —2884 2856 2856 —2884 2856 —2884 —2884 2856
C —343 0 0 —3.43 0 343 343 0 3.16 0 0 3.19 0 -3.16 -3.16 0
D (m) 3.02E-5 4.00E-5 —4.00E-5 —3.02E-5 —4.00E-5 —3.02E-5 3.02E-5 4.00E-5 3.94E-5 4.00E-5 —4.00E-5 —3.94E-5 4.00E-5 —3.94E-5 3.94E-5 4.00E-5

POST-68#C (S002) Tb S2MIINUS pup SpIOS' fO [DUINOL [PUOLIDUIII] | D 1 040940g [T

L6YT
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The warp inclusions (3 and 4 in Fig. 2) normal to the y-direction and extending in the x-direction are fit
with

Foo(x,y) = A(y) - sin(B(y) - x + C(y)) + D(») (28)

The front and rear faces of the RVE yield the upper and lower cross-section bounds for each inclusion.
For Fill 1, the lower bound of the fill cross-section on the front face is taken as the upper bound of Warp 4
(see Figs. 2 and 5). The opposite is the case on the rear face in which the upper bound of Fill 1 on the rear
face is the lower bound of Warp 3. The equations that bound these faces are of the form of Eq. (18), and the
A, B, C, and D parameters are given in Table 2 and subsequently plotted for the front fill face in Fig. 4.
From the complete description of each face of the RVE, two conditions are extracted for creating each sur-
face function. The other two conditions are generated by assuming that the slope of the undulation with
respect to the fiber direction is equal to zero at the front and rear faces, respectively. Then the four param-
eters described by A(x), B(x), C(x), and D(x) in Eqgs. (27) and (28) can be determined from the face equa-
tions and the slope constraints. Each inclusion is represented by two surface functions bounding the upper
and lower portions of the fiber/matrix bundles. For a plain weave fabric, a total of eight surface functions
are generated that completely define the four inclusions of the RVE. For the CERL geometry, the top
bound of the Fill 1 inclusion is represented as

Ae1 (x) = —.0000372 - sin(1710 - x) — .0000988 + .0000645 - sin(2150 - x + .41) (29)
B (x) = 1710 (30)
Crri(x) =0 (31)
Drpi (x) = —.0000372 - sin(1710 - x) — 00000726 — 0000645 - sin(2150 - x + 41) (32)
topyy (x,») = Arri(x) - sin(Brri (x) - ¥ + Crei (x)) + Dra () (33)

Upper portion of the

- front face (slope in the
Upper bound surface of Fill 1 y direction is zero)

Fill face ™+

. Fill face :
(front) -

Upper portion of the Z
rear face (slope in X

the y direction is y

Fig. 5. Illustration of three-dimensional surface function mapping for the upper bound of fill 1 in the CERL geometry (1/2 period
shown).
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An illustration is shown in Fig. 5. For the idealized geometry, the surface that describes the top bound of
Fill 1 is represented as

Arni(x) = — D §in (E> B N QR {n(Zx —dg T 4611)] sin (%)

4 2a, 2 4 2(ag, — 2ay) 4a,
+% sin [ﬂ(éx(a—glail 24;14)611)] +c:;3 sin (Zc;gll) -
Breii(x) Zi@ 35)
Creri(x) =0 36)
P e
3 (ﬁ) (37)
topyi(x,3) = Arrii(x) - sin(Breii(x) - y + Creii(x)) + Dreai(x) (38)

The graphic representation for the surfaces bounding the entire plain weave fabric is seen in Fig. 6 for the
CERL geometry.

Generating surface functions for each inclusion bound is necessary for implementing the periodic
microstructure model. The inclusion bounds can now be used to compute volume fractions for each inclu-
sion to the entire RVE, as well as various terms necessary to solving the effective stiffness (Eqs. (11), (14),

(15), (17)).

St KT N AL
530:03:?4?2:43’

"'.:'3 220005200, 1/
S
RELLHLAL

&::;: !

)
""‘, CHL AL
< 2
.’:t‘-:'

Fig. 6. Plot of the surface bounds for the inclusions of a plain weave fabric RVE (1/2 period shown).
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6. Effective stiffness

The surfaces that bound the inclusions can now be used to compute the volume fraction of the inclusions
to the entire RVE, as well as the g-integrals (Eq. (15)), FS® (Eq. (11)), S* (Eq. (14)), and 4 (Eq. (17)). Each
of these expressions is evaluated for a given number of terms N [see Eq. (3)]. In addition, it is assumed that
the direction of the fibers within each inclusion is parallel to the slope of the undulation. The inclusions are
treated as unidirectional composites with average properties. Existing micromechanical models (Luciano
and Barbero, 1994; Barbero and Luciano, 1995) are used to determine the material properties in terms
of fiber and matrix properties within each inclusion, resulting in transversely isotropic material properties
for each inclusion. The g-integral is evaluated for each inclusion according to the following expanded form

1 a —ag topyy (x,p) . mx n Nz
g (=& =— / / / exp (—177: <—l + 2y +22 )) dzdxdy (39)
UTfl J—ay J—ae  Jbot (x) @ @ as

in which the terms botg(x, y) and topg(x,y) are the surface functions that bound the inclusions and the x
term has been expanded to show the indices ny, n,, and n3. The volume of the inclusion, vy, is determined
by simply evaluating Eq. (39) without the exponential term. The Fourier coefficient of S* is simplified with
the assumption that an isotropic matrix surrounds the inclusions. With this assumption, the local stiffness
of the matrix is no longer a function of position, and the simplified term for FS” is written as

_ _ - 1 - -

FSP(&) =2sym(E@ P @ ¢) - —Cwiolait—Lloial? (40)

or in indicial notation
1~ .- — oz - [ _

FSII;H(@BO =5 [éj((silék + 51‘k51) + fi(éﬂfk + 5_/1(51)] 1= (f[éjékél) + &i&;0u (41)
in which the only material property remaining is the Poisson’s ratio of the matrix and

: ¢

E=—. 42

S=TE (42)

A Mathcad™ sub-routine is written to evaluate Eq. (41) in contracted notation, the result of whichisa 6 x 6
matrix. From the evaluation of the g-integrals and FS*, the periodic integral operator S* can be determined
according to Eq. (14) in which f;, is the mesoscale volume fraction of a given inclusion to the entire RVE,
denoted as

f;{_

URVE

%3 (43)

The final term to be evaluated in order to solve for the effective stiffness matrix is a combination of the pre-
viously evaluated terms, which is determined according to Eq. (17). From the steps outlined previously, the
effective stiffness of the homogenized plain weave fabric RVE can be determined for a given value of N.

7. Results

The equations necessary for determining the effective stiffness matrix are written into a general
Mathcad™ template, which can be modified for a plain weave fabric composite with any combination of
fabric architecture dimensions and constituent materials. Using Section 5.2 to represent the fabric geome-
try, a Mathcad™ file is generated and the properties are calculated for the plain weave fabric architectures
in (Ito and Chou, 1998; Scida et al., 1999; Kollegal and Sridharan, 2000b; Sheng and Hoa, 2001) and com-
pared with experimental and/or existing model results. The results are listed in Tables 3-6. For the material
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Table 3
Comparison of periodic microstructure vs. experimental results from (Ito and Chou, 1998) for an AS4/vinylester plain weave fabric
composite (N = 95)

Effective material properties

Periodic microstructure Ito and Chou (experimental)

E, 44.602 GPa ~43.5GPa
E, 43.714GPa -

E. 9.997GPa _

G, 2.909 GPa -

Gy: 2.887GPa _

Gy 3.608 GPa -

Ve 0.411 -

Veo 0.404 -

Vay 0.062 _

Table 4

Comparison of periodic microstructure vs. the experimental results from (Scida et al., 1999) for an E-glass/vinylester plain weave fabric
composite (N = 5)

Effective material properties

Periodic microstructure Scida et al. (experimental)

E, (GPa) 24.9 248 + 1.1

E, (GPa) 24.9 248+ 1.1

E. (GPa) 10.4 85+2.6

G,- (GPa) 291 42407

G, (GPa) 291 42+0.7

G,, (GPa) 4.38 6.5+0.8

V- 0.345 0.28 £0.07

Viz 0.345 0.28 £ 0.07

v 0.130 0.1 +0.01

xy

Table 5
Comparison of periodic microstructure vs. experimental results from (Kollegal and Sridharan, 2000b) for an E-glass/epoxy plain weave
fabric composite (N = 5)

Effective material properties

Periodic microstructure Kollegal and Sridharan (experimental)
E, 18.902 (GPa) 19.29 (GPa)
E, 18.902 (GPa) -
E. 8.735 (GPa) -
G, 2.567 (GPa) -
G.. 2.567 (GPa) -
Gy, 3.065 (GPa) 3.18 (GPa)
vy 0.437 -
Viz 0.437 -
Vap 0.129 0.2

from (Ito and Chou, 1998), the fiber volume fraction of each tow (Table 1) is calculated from the volume
fraction of the tows in the RVE V. and the overall fiber volume fraction Vi, according to
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Table 6
Comparison of periodic microstructure vs. experimental results from (Sheng and Hoa, 2001) for a T300/epoxy plain weave fabric
composite (N = 5)

Effective material properties

Periodic Microstructure Sheng and Van Hoa (model)
E. (GPa) 50.667 58.9
E,(GPa) 49.778 52.1
E. (GPa) 10.802 11.2
G, (GPa) 2971 4.01
G,. (GPa) 3.003 3.87
G,, (GPa) 4.028 3.71
Yy 0.391 0.460
Vs 0.384 0.442
Vi 0.063 0.048
Vf o
Viow = — 44
f.tow Vinc ( )

For the idealized geometry, periodic microstructure predictions in Tables 3-6 are in excellent agreement
with the available experimental values. Modification of the Mathcad™ template for each material system
consisted of merely changing the respective RVE dimensions and material properties for each case. The
comprehensiveness of the model is especially seen in the comparison of predictions with experimental data
of Scida et al. in (1999). The model predicts moduli values that are within or very near the published stand-
ard deviation. What is even more significant is the ability of the model to capture the interlaminar proper-
ties E., G,., and G,..

Fabric-reinforced composite properties predicted using the measured CERL geometry are shown in
Table 7 and compared to those predicted using the idealized architecture. The idealized geometry is con-
structed using the outer dimensions of the CERL RVE (a,,a,,a3,a,1,4a,> in Fig. 2). The inclusions are as-
sumed to be AS4/vinylester for both geometries. The fiber volume fraction for the CERL geometry is
calculated by Eq. (44) with V;, calculated on the idealized geometry (based on the outer CERL dimen-
sions) and using the published Vi, for AS4-D Carbon/vinylester found (Table 1).

The comparison between the CERL geometry and the idealized geometry (Table 7) reveals the sensitivity
of the periodic microstructure model to the geometry of the inclusions, specifically RVE dimensions and
tow crimp. For the AS4/vinylester analysis using the CERL architecture, the tow crimp in the x-direction
is significantly less than in the y-direction, resulting in an increase in the longitudinal modulus, E,. Some of
this effect is captured by the idealized model due variations in a; and a,, but the effects of variations in tow

Table 7
Comparison of CERL and Ito and Chou fabric architectures for AS4/vinylester model results (N = 5)

Effective material properties

CERL architecture Idealized architecture
E, (GPa) 40.654 41.106
E, (GPa) 28.398 41.107
E. (GPa) 7.901 9.807
G,. (GPa) 2.251 3.077
G,. (GPa) 2.201 3.077
G,, (GPa) 3.054 3.574
Vs 0.454 0.437
Vs 0.431 0.437

Yy 0.082 0.059
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crimp between individual tows or weave directions is lost in the idealized geometry. It is shown in Table 7
that variations in tow crimp and fiber/matrix bundle diameter has a profound impact on the in-plane elastic
moduli, £, and E,. There is a 35 percent difference between E, and E, when actual photomicrograph data
are used, whereas no difference is seen between E, and E, when the idealized geometry is used, even though
the dimensions of the RVE (a;,a,) are correctly represented (Table 3).

8. Conclusions

Based on the comparisons with experimental data for a variety of independent material systems, periodic
microstructure is shown to predict well the complete set of effective orthotropic material properties for a
plain weave fabric composite. Using periodic microstructure micromechanics, the rigorous mathematical
framework of (Nemat-Nasser and Hori, 1993) is extended to predict the effects of multiple inclusions at
the mesoscale for woven fabric composite materials using real and idealized geometric representations of
the fabric RVE. The effective stiffness matrix (Eq. (16)) is modified to capture the interactive effects caused
by multiple inclusions and a systematic approach is developed in Section 5 to characterize the inclusions in
terms of three-dimensional surface functions. The necessary calculations are performed using Mathcad™, a
commercially available mathematics software package. Three-dimensional mapping using photomicro-
graph data and idealized equations for a variety of plain weave composite data is used to develop sets
of surface functions that represent the bounds of the warp and fill inclusions, as seen in Fig. 2. Using
the periodic microstructure model to compare calculations performed with both geometries, it is seen from
the results that the model is able to capture the interlaminar properties for a woven fabric composite, and
that the in-plane moduli are sensitive to both tow crimp and RVE dimensions. The CERL geometry, due to
uneven RVE dimensions and RVE face mismatch observed from photomicrograph data and captured by
the curve fitting, is more sensitive to these effects than the idealized geometry. It is shown in Table 7 that the
mismatch of the RVE can vary the longitudinal moduli of the fabric by 35%. The strength of the idealized
geometry used in conjunction with Mathcad™ is that a wide variety of plain weave fabric architectures and
materials systems can be easily solved from simple measurements of the RVE dimension and knowledge of
the volume fraction of reinforcement fiber. From comparisons with experimental data on a variety of fabric
geometries and material combinations, the model can easily and effectively predict the linear elastic material
properties of plain weave fabric composites. This procedure has applications that extend beyond effective
material property prediction of fabric-reinforced composites. Because of the generality of the derivation
process, this technique could be applied to any periodically heterogeneous system, provided that the bounds
of the heterogeneity can be quantified by surface functions.
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